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Abstract Fraclals are objects which have a similar appearance when viewed at different scales. Such objects
have detail at arbitrarily small scales, making them too complex to be represented by Euclidean space. They
are assigned a dimension which is non-integez. Some natural phenomena have been modelled as fractals with
success; examples include geologic deposits, topographical surfaces and seismic activity. In particular, time
series data has been represented as a curve with dimension between one and two. There are many different
ways of defining fractal dimension. Most are equivalent in the continuous domain, but when applied in practice
to discreie data sets lead to different results. Three methods for estimating fractal dimension are evaluated
for accuracy. Two standard algorithms, Hurst’s rescaled range analysis and the box counting method, are
compared with a recently introduced method which has not yet been widely used. It will be seen that this last
method offers superior efficiency and accuracy, and it is recommended for fractal dimension calculations for
time series data. We have applied these fractal analysis techniques to rainfall time series data from a number
of gauge locations in (Jueensland. The suitability of fractal analysis for rainfall time series data is discussed,
and how the theory might aid our interpretation of rainfall data.

i. INTRODUCTION ‘self-affine’ instead of sell-similar becuase they scale
by different amounts in each axis direction.

In the next section we very briefly review two of the
most well-used methods used for calculating fractal
dimensions of graphs, and call attention to a more
recent method. We then discuss the interpretation
of fractal dimension. In section 4 we dimension esti-
mates for rainfall data from gauge stations covering
most of Queensland.

Fractal analysis provides a unique insight into a
wide range of natural phenomena. Fractal objects
are those which exhibit ‘sell-similarity’. This means
that the general shape of the object is repeated at ar-
bitrarily smaller and smaller scales. Coastlines have
this properiy: a particular coastline viewed on a
world map has the same characier as a small plece
of It scen on a local map. New details appear at each
smaller scale, so that the coastline always appears
rough. Although true fractals repeat the detail to

an infinitely small scale, examples in nature are self- 2. A REVIEW OF THREE FRACTAL DIMEDM-
similar up to some finite limit. SION METHODS

The fractal dimension measures how much complex-

ity is being repeated at each scale. A shape with There are many methods available for estimating
a higher fracial dimension is more complicated or the fractal dimension of data sets. These lead to
‘rough’ than one with a lower dimension, and fills different numerical resulls, yet little comparisen of
more space. These dimensions are fractional; a accuracy bas been made between them in the liter-
shape with fractal dimension of D = 1.2, for exam- ature. We compared a miore recent algorithm, the
ple, fills more space than a one-dimensional curve, variation method, to two methods which stand out
but less space than a two-dimensional area. The as the most popular for assigning fractal dirnensious
fractal dimension succinctly tells much information to time series, the box-counting method and rescaled
about the geometry of an object. Very realistic com- range analysis.

puter images of mountains, clouds and plants can be
produced by simple recursions with the appropriate

fractal dimension.
2.1. Box-Counting

Time series of many natural phenomena are fractal,
Smmall sections taken from these series, once scaled

by the appropriate factor, cannot be distinguished The box counting algorithm is intuitive and easy to
from the whole signal. Being able to recognise a apply. It can be applied to sets in any dimension,
time series as {ractal means being able to link in- and has been used on images of everything from river
formation ab different time scales. We call such sets systems to the clusters of galaxies.
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A fractal curve is a curve of infinite detall, by virtue
of its self-similarity. The length of the curve is indef-
inite, increasing as the resclution of the measuring
instrument increases. The fractal dimension deter-
mines the increase in detail, and therefore length, at
cach resolution change. For a fractal, the length L
as a function of the resolution of the measurement
device & is

L{6y o 677, (1)
where I} is an exponent known as the fractal di-
mension. (For ordinary curves L(d) approaches a
constant value as § decreases.)

Box-counting algorithms measure L{4) for varying §
by counting the number of non-overlapping boxes of
size 4 required to cover the curve, as illustrated in
Figure 1. These measurements are fitted to (1) to
obtain an estimate of the fractal dimension, known
as the box dimension.

A fractal dimension can be assigned o a set of time
series data by plotting it as a function of time, and
calculating the box dimension. (1) will hold over a
finite range of box-size; the smallest boxes will be
of width r, where 7 is the resolution in time, and
height a, where a is the resolution of the data.
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Figure 1: An example of a box counting
cover for a record of Brownian motion.
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2.2. A/S Analysis

flescaled range (or R/5) analysis is really a tool to
search for long-term memory or correlation in time
series. It has been used fo show that many natural
phenomena previously assumed te be governed by
random Gaussian processes exhibit long-range sta-
tistical dependence {see section 3.1). A statistic H,
0 < H < 1, 1s used as a measure of the degree of cor-
relation, with H = 1 indicating perfect correlation
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between increments. The long range dependence is
clogely related to selfsimilarity of the process. If
the time series is fractal, the statistic H is related
to the fractal dimension by
D=2-H.

(2)

Details of the theory can be found in Mandelbrot
[1969], Pang et al. [1996] and Feder [1988].

Estimates of the statistic # are obtained simply, and
the technique has been widely used for analysing
geological deposits, solar activity and seismic activ-
ity (Ruzmaikin [1994], Komm [1995], Ogata [1991],
Pang et al. [1996]). Unfortunately, this method
overestimates H for H < 0.72, and underestimates
H for # > 0.72 {North et al. [1594], Wallis et al.
[1971}}, with the error increasing as the dataset size
decreases. Very large bias is also introduced where
periodicity or non-stationarity of means is present in
the data (Mandelbrot [1969], North et al. [1994]).
This makes B/S analysis unsuitable as a method for
much climatic data, and any datasets of limited size.

2.3. Variation Method

Dubuc et al.  [1989] present a method which
they claim gives more accurate results than the
standard box-counting applications, as well as
being more robust and efficient. The method
uses coverings built out of intervals rather than
boxes. The Iollowing is a very simple descrip-
tion of the method. For full details, see Dubuc
et al.  {1989], and also Dubuc et al. [1996].
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Figure 2: An example of a variation cover for
a record of Brownian motion,

An example of a covering constructed by the varia-
tion method is shown in Figure 2. 1t is constructed
by calculating the ‘oscillation’ at points along the



curve. If we label the curve X({t), the oscillation at
a point X (fg; is simply

v(X (to), €) =

mar
rE{dg=e,tgte)

X{r)~

max
g, dg e}

minX (7).

(3)

This corresponds to the height of cover shown in
Figure 2. ¢ gives the scale at which we measure the
oscillation, sirnilar to the size of boxes in the box
cover. As e decreages, so does the cover.

To calculate the fractal dimension we find the area
of the cover, V(¢), and calculate the rate at which
the area tends to 0 as ¢ tends to 0. [t turns out that
a log-log plot of ¥ (e)/c? vs. 1/e* gives the fractal
dimension as its slope. The area V(e) is called the
variation of X.

2.4. Numerical Comparison of Methods

I order to compare fractal dimensions of data taken
from different stations, which may be expected o be
close in value, a method is required which produces
estimates which are as accurate as possible given the
sample size. The rainfall data sets each had approx-
imately 1000 points.

The three methods outlined above were tested on
curves with known fractal dimension. The results
shown in I'igures 3 and 4 are frem tests done on
Welerstrass-Mandetbrot (W-M) curves; the W-M
function is a function whose dimension can be siip-
ulated. For a description of this curve, see Feder
[1988].

Pigure 3 shows results produced by the three
methods for different true fractal dimensions; each
dataset contained 1060 points. Thé plot gives an in-
dication of the difficulty in interpreting results pro-
dueced by R/S analysis. 1t also shows that the vari-
ation method performs slightly better than the box-
counting method on sets of any dimension.
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Figure 3: Estimates produced by the three
methods of the fractal dimension of the Weter-
strass-Mandelbrot curve with varying true frac-
tal dimension. Fach sample of the curve con-
tained 1080 points. The dotted line represents
ideal hehaviour.
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Figure 4: The convergence of [ractal dimen-
sion estimates to the true value with data set
size for the box-counting and variation meth-
ods. The data sets are samples of the Weier-
strass-Mandelbrot curve with dimension 1.5.

Numerical algorithms will underestimate the frac-
tal dimension of functions such as the Weierstrass-
Mandelbrot function, since the calculation is done
on a finite sample of points joined by straight lines,
an object of reduced complexity. Figure 4 com-
pares the convergence of dimension estimates given
by the variation and box-counting methods for the
Welerstrass-Mandelbrot curve. Similar rates are ob-
tained with Brownian motion samples. The plot
gives an indication of the dataset size required to
achieve a specified acouracy; this will be a good in-
dication for sets of fractal dimension approximately
1.5,



3. INTERPRETATION OF FRACTAL DI-
MENSION

We have already mentioned that the fractal dimen-
sion of an objlect is a measure of complexity and
degree of space filling, When the object is a series
in time, the dimension also tells us something about
the relation between increments. It is a useful and
meaningful insight into series of natural processes.

3.1L. Fractional Brownian Motion

A particle undergoing Brownian motion moves by
jumping step-lengths which are given by inde
pendent Gaussian random variables.  For one-
dimensional motion the position of the particle in
time, X (1), is given by the addition of all past in-
crements. The function X (1) is a sell-afline fractal,
whose graph has dimension 1.5.

Fractional Brownian motion generalises X () by al-
lowing the increments to be correlated. Ordinary
Brownian motion can be defined by

X)) = X(to) ~ €t — ta]™, £ > to,

(4)

where H = 1/2, £ is a normalised independent
Gaussian process and Xf{ig) is the initial position
(Wiener [1923], Teder [1588]). Replacing the expo-
nent i = 1/2 in (3) with any other number in the
range 0 < 3 < 1 defines a {ractional Brownian mo-
tion (fBm) function Xy (). The exponent H here
corresponds to the statistic A that R/S analysis cal-
culates.

The correlation function of future increments with
past increments for the motion X g (t) can be shown
to be (Vicsek {1892])

Oty =221 -1, (5)
Clearly, C{#}) = 0 for H = 1/2; increments in
ordinary Brownian rnotion are independent. For
H > 1/2, T{t) is positive for all i. This means
that after a positive increment, future increments
are more likely to be positive. This is known as
persistence. When H < 1/2, increments are neg-
atively correlated, which means an increase in the
nast makes a decrease more likely in the future. This
is called antipersistence.

Now it is true for self-affine functions such as Xy (1)
that the fractal dimension, IJ, is related to H by
{Feder [1988})

D=2-H. (6)

We can then identily persistence or antipersistence
in data sets whose graphs are fractal. Persistent

time series show long term memory effects. An in-
creasing trend in the past is likely to continue in the
future becaunse future increments are positively cor-
related to past ones. Similarly, a negative trend will
persist, This means that extreme values in the se-
ries tend to be more extreme than for uncorrelated
series. In the context of climatic data, droughts or
extended rain periods are more itkely for persistent
data.

3.2. Sirnulating fractional brownian motion

The successive random addition algorithm intro-
duced by Voss [1988] can be used to generate sam-
ples of fractional Brownian motion. An example of
this process for 2000 points and a fractal dimen-
slon estimated by the variation method to be 1.38
is shown in Figure 5a, and Figure 5b shows rainfall
data with the same fractal dimension estimate. The
similarity is obvious.

The rainfall data in Figure 5b is a rainfall ‘record’,
defined to be the cumulative sum of deviations from
the mean.
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Figure 5: {a} A sample of fractional brow-
nian motion, and {b} A plot of a rainfall
record {defined in section 3.2) from Brisbane.
Both graphs have fractal dimension estimates of
D=1.38.



4, RESULTS FOR RAINFALL TIME SERIES

The data sets analvsed were series of monthly rain-
fall totals, collected at 52 gauge stations in Queens-
tand. The average length of the series was 1200 val-
ues.

The fractal dimensions of the records (section 3.2} of
the sets were calculated using the variation method.
A sample of the results are shown in Figure 7. For
legibility, the numbers shown are the first two deci-
mal places of the estimate only: dimensions are al-
ways between one and two. A plot of dimension vs.
annual rainfail for the 52 stations is shown in Fig-
ure 6; it shows a weak correlation between dimension
and total amount of rain.

Whether or not the rainfall series are self-similar
can be determined from the goodness of the fits of
the log-log plots. In simple terms, if the points of
the piot line up on a straight line it means that the
amount of detall at each new scale is the same, ie.
the data set shows self-similarity. Yigure 8 shows
plots for stations Brishane and Kowanyama. Data
from all stations produced good fits; the average
standard deviation for the least squares fit used to
obtain the lines was s = 0.02. The plots imply that
rainfall amounts over the range one month to ~ 100
years are self-similar.
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Figure 6: Plot of dimensions vs. annual rain-
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It was noted in section 3.1 that the fractal dimension
of a time series gives a measure of the correlation
between increments. Dimensions between | and 1.5
indicate persistence, or existence of clear trends in a
series, while dimensions between 1.5 and 2 indicate
antipersistence, or that the signal is very noisy, This
gives some insight into the results in Figure 7.
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Figure 7: Fractal dimension estimates ob-
tained for monthly rainfall data in Queensland.
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Figure 8: Variation log-log plots for two rain-
fall data sets. The fractal dimension estimate is
given by the siope.



5. CONCLUSBION

The Queensland rainfall data sets show self-
similarity over scales ranging from one month to
~ 100 years., That i, monthly fluctuations have
the sarne statistical behaviour as fluctuations on a
decade scale. The ability to perform scale shifts and
thus extend limited data is an attractive prospect.
Investigations need to be made into the limit of
scales to which seif-similarity extends, Also worth
considering is the possibility of simulating rainfall
using fractional Brownian motion as a model,

The fractal dimnesion is a convenient description
of a rainfall time series; it describes the irregular-
ity or randomness in the series, and whether or not
there are long term memory effects present. 1t is
simple o calculate; the varlation method gives ro-
bust and reliable estimates. For these reasons, the
fractal dimension should be a useful tocl. The spa-
tial distribution of results for Queensland data sets
indicates that all rainfall does not have the same di-
mension, and therefore the same fractal properties.
The challenge is to explain the distribution of values
in physical terms.
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7. APPENDIX

The 52 gauge station data sets are sets compiled
by NOAA, and were obtained from the LDEO
(Columbia University) Climate Data Catalog on the
world wide web (http://ingrid.ldgo.columbia.edu/).



